Aspherical shell with an inner radius $'a'$ and an outer radius $'b' $ is made of conducting material. A point charge $+Q$ is placed at the centre of the spherical shell and a total charge $- q $ is placed on the shell.

Charge $- q $ is distributed on the surfaces as

115-903

  • A

    $- Q$ on the inner surface, $- q$ on outer surface

  • B

    $- Q$ on the inner surface, $- q + Q$ on the outer surface

  • C

    $+Q$ on the inner surface, $-q - Q$ on the outer surface

  • D

    The charge $-q$ is spread uniformly between the inner and outer surface.

Similar Questions

Given below are two statements.

Statement $I$ : Electric potential is constant within and at the surface of each conductor.

Statement $II$ : Electric field just outside a charged conductor is perpendicular to the surface of the conductor at every point.

In the light of the above statements, choose the most appropriate answer from the options give below.

  • [JEE MAIN 2022]

‘At the surface of a charged conductor electrostatic field must be normal to the surface at every point’. Explain.

The adjacent diagram shows a charge $+Q$ held on an insulating support $S$ and enclosed by a hollow spherical conductor. $O$ represents the centre of the spherical conductor. and $P$ is a point such that $OP = x $ and $SP = r$ . The electric field at point $P$  will be

$IAn$ empty thick conducting shell of inner radius $a$ and outer radius $b$ is shown in figure.If it is observed that the inner face of the shell carries a uniform charge density $-\sigma$ and the surface carries a uniform charge density $ '\sigma '$

Choose the correct statement related to the potential of the shell in absence of $q_B$

Two concentric spherical shells of radius $R_1$ and $R_2$ have $q_1$ and $q_2$ charge respectively as shown in figure. How much charge will flow through key $k$ when it is closed