Aspherical shell with an inner radius $'a'$ and an outer radius $'b' $ is made of conducting material. A point charge $+Q$ is placed at the centre of the spherical shell and a total charge $- q $ is placed on the shell.
Charge $- q $ is distributed on the surfaces as
$- Q$ on the inner surface, $- q$ on outer surface
$- Q$ on the inner surface, $- q + Q$ on the outer surface
$+Q$ on the inner surface, $-q - Q$ on the outer surface
The charge $-q$ is spread uniformly between the inner and outer surface.
Given below are two statements.
Statement $I$ : Electric potential is constant within and at the surface of each conductor.
Statement $II$ : Electric field just outside a charged conductor is perpendicular to the surface of the conductor at every point.
In the light of the above statements, choose the most appropriate answer from the options give below.
‘At the surface of a charged conductor electrostatic field must be normal to the surface at every point’. Explain.
The adjacent diagram shows a charge $+Q$ held on an insulating support $S$ and enclosed by a hollow spherical conductor. $O$ represents the centre of the spherical conductor. and $P$ is a point such that $OP = x $ and $SP = r$ . The electric field at point $P$ will be
$IAn$ empty thick conducting shell of inner radius $a$ and outer radius $b$ is shown in figure.If it is observed that the inner face of the shell carries a uniform charge density $-\sigma$ and the surface carries a uniform charge density $ '\sigma '$
Choose the correct statement related to the potential of the shell in absence of $q_B$
Two concentric spherical shells of radius $R_1$ and $R_2$ have $q_1$ and $q_2$ charge respectively as shown in figure. How much charge will flow through key $k$ when it is closed